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Abstract. Topic models are hierarchical probabilistic models for the
statistical analysis of document collections. It assumes that each docu-
ment comprises a mixture of latent topics and each topic can be rep-
resented by a distribution over vocabulary. Dimensionality for a large
corpus of unstructured documents can be reduced by modeling with these
exchangeable topics. In previous work, we designed a multi-pipe struc-
ture for question answering (QA) systems by nesting keyword search,
classical Natural Language Processing (NLP) techniques and prototype
detections. In this research, we use those technologies to select a set of
sentences as candidate answers. We then use topic models to rank these
candidate answers by calculating the semantic distances between these
sentences and the given query. In our experiments, we found that the
new model of using topic models improves the answer ranking so that
the better answers can returned for the given query.

1 Introduction

Question answering (QA) is an important area in information retrieval. It in-
volves query analysis, recognition of relevancy and search. In our previous work,
we designed a deduction engine which supports a “multi-pipe” process flow
to handle keyword search as well as some special prototypes [12]. By reason-
ing based on these prototypes, our systems can improve over classical keyword
matching approach. However, the fundamental problem for learning from text
and natural language processing is how to learn the ‘meaning’ and ‘usage’ of
words in data-driven fashion. How to model polysemy and synonymy of words
become the first step towards semantic understanding.

Latent semantic indexing (LSI) [5] a is well-known technique which partially
addresses this problem. LSI makes three claims: semantic information can be de-
rived from a word-document co-occurence matrix; that dimensionality reduction
is an essential part of this derivation; and the words and documents can be rep-
resented as points in Euclidean space. The key idea is to map high-dimensional
vocabulary count vectors to a lower dimensional representation by using Singu-
lar Value Decomposition and selected largest eigenvalues. Due to the unsatis-
factory theoretical foundation, Hofmann developed probabilistic latent semantic
indexing (pLSI) [9] based on a mixture decomposition derived from a latent
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class model. pLSI models each word in document as a sample from a mixture
of topics. Each word is generated from a single topic, and different words in a
document may be generated from different topics. However, pLSI does not pro-
vide a probabilistic model at the document level. Blei et al. [4] later proposed a
three-level hierarchical Bayesian model called latent Dirichlet allocation (LDA).
In LDA, document level is modeled by a Dirichlet distribution. LDA has been
heavily cited in machine learning community for its effectiveness and theoretical
soundness.

Griffiths and Steyvers [7] proposed similar models for learning natural lan-
guage by using these latent topics, we call these models “topic models”. In this
paper, we discuss an application using topic models proposed in [13] for answer
ranking in a question answering system. This paper is organized as follows: tech-
nical details of topic models are introduced in section 2. In the section 3, after a
brief introduction on our previous work on question answering system, we dis-
cuss how to rank answers by using topic models. Some experimental results on
a small corpus are presented in section 4. The conclusions and discussions are
given in the final section.

2 Topic Model

The study of latent topics is popularized by Hofmann’s work [9] on probabilistic
latent semantic indexing. In this model, a document label d (d = 1, · · · , D) and
a word wi (i = 1 · · ·W ) are conditionally independent given a latent topic z:

p(d, wi) = p(d)
∑

z

p(wi|z)P (z). (1)

The model learns the topic mixture p(z|d) only for those training documents and
the size of parameters grows linearly with the corpus size M . LDA overcomes
these problems by treating the topic mixture weights as a k-dimensional random
variable θ with Dirichlet distribution [4].

p(θ|α) =
Γ (

∑k
i=1 αi)∏k

i=1 Γ (αi)
θα1−1
1 · · · θαk−1

k (2)

Then, the probability of a document w becomes the conditional probability given
hyper-parameters α and γ [4]:

p(w|α, γ) =
∫

p(θ|α)
W∏

i=1

∑

zi

p(zi|θ)p(wi|zi, γ)dθ (3)

where γ is a k × W matrix with γjl = P (wi = l|zi = j) and p(wi|zi, γ) is a
multinomial probability conditioned on the topic zi. More details about LDA
can be found in [4].
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Fig. 1. A general structure of a topic model. The shaded node is the observable variable
and others are latent variable. Relationships between latent topic z, random variable
θ, φ and hyperparameters α and β are discussed in Section 2 below.

Griffiths and Steyvers [7,13] explored a variant of LDA by introducing another
multinomial random variable φ to smooth the word distribution in every topic.
φ is also a Dirichlet distribution governed by the hyperparameter β.

p(φ|β) =
Γ (

∑k
i=1 βi)∏k

i=1 Γ (βi)
φβ1−1

1 · · ·φβk−1
k (4)

Figure 1 shows the graphical relations between these variables. The topic
model is a generative model [10] for documents. Documents are assumed to
be generated following a simple probabilistic procedure. Each document is a
mixture of topics and each topic is a probability distribution over words [1,13].
There are set of parameters governed by some prior distributions and these priors
are defined by Dirichlet distributions. The variables φ, θ and z (the assignment
of word tokens to topics) are latent variables and hyperparameters α and β are
constants in the model. The inner plate over z and w illustrates the repeated
sampling of topics and words until Nd words have been generated for document
d. The plate surrounding θ(d) illustrates the sampling of a distribution over
topics for each document d for a total D documents (the whole corpus). The
plate for φ(z) illustrates the sampling of word distributions for each topic z until
T topics have been generated [13]. Figure 2 shows the geometric interpretation
of the relations between document-topic and topic-word. Suppose we only have
3 words in our vocabulary, then a topic can be represented as a probability
distribution on these 3 words. Therefore, a topic must lie on the simplex of these
3 words. Similarly, if we only have 3 topics, a document can be represented as a
point on the simplex of topics.

There are a few methods to estimate the parameters for graphical models,
such as variational methods [4] and Expectation Maximization (EM) algorithm
[14]. In this paper, we use Gibbs sampling algorithm to consider each word token
in the text in turn, and estimate the probability of assigning the current word
token to each topic, conditioned on the topic assignments to all other word
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Fig. 2. A topic is a distribution over observable words and a document is a distribution
of latent topics. In this simple case, there are 3 words and 3 topics. A document can be
represented as a point on the surface of a simplex of topics. A topic can be regarded
as a point of on the simplex of words.

tokens. The probability zi = j (assign token i to topic j) is conditioned on wi

(current word token), z−i (topic assignments of all other word tokens), and di

(current document).

P (zi = j|z−i, wi, di, I) ∝
(

CWT
wi,j + β

∑W
w=1 CWT

wj + Wβ

) (
CDT

di,j
+ α

∑T
t=1 CDT

di,t
+ Tα

)
(5)

where I refers to all other observed information such as all word and document
indices w−i d−i and hyperparameters α and β. CWT and CDT are the matrices
of counts with dimensions W × T and D × T , respectively; CWT

wj contains the
number of times word w is assigned topic j, not including the current instance i
and CDT

dj contains the number of times topic j is assigned to some word token
in document d, not including the current instance i. The estimate of posterior
probability distributions for θ (topic-document distribution) and φ (word-topic
distribution) directly obtained by [13]:

φ̂j
i =

CWT
ij + β

∑W
k=1 CWT

kj + Wβ
(6)

θ̂d
j =

CDT
dj + α

∑T
k=1 CDT

dk + Tα
(7)

The detailed sampling algorithm and justification of above equations are avail-
able at [7,13].

Given a new document w which is not contained in the training corpus D,
how can we represent the document by a distribution of topics? For a particular
topic tj , according to Bayes’ rule:

p(tj |w, D) ∝ p(w|tj , D)p(tj |D) (8)
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where the ‘prior’ probability of topic tj (conditional on the training corpus) can
be calculated by:

p(tj |D) =

∑W
i=1 CWT

wi,j∑W
i=1

∑T
j=1 CWT

wi,j

(9)

and the likelihood is:

p(w|tj , D) =
|D|∑

d

∏

i

p(wi|tj)p(tj |d)p(d) (10)

For training the topic model in Figure 1, we have to predefine the number
of topics. Automatic determination of the number of clusters has been a per-
sisting challenge in machine learning though some work has tried to address
this problem [1]. In this work, we simply decide the topic number based on the
size of corpus. For example, we set 20% of the corpus size as the topic number.
For a new document, we can then calculated the topic distribution according to
equation 8. Some recent work are looking at more general topic models by con-
sidering the correlation between topics [3] and the time evolution of topics [2] in
large corpus. In this paper, we assume the topics are conditionally independent
without evolutionary properties because the corpus we are testing only contains
some simple texts from user manuals. In the following section, we discuss the
use of this model for ranking answers given a query.

3 Ranking Answers

In our previous work [11,12], we described a hybrid reasoning engine which sup-
ports a “multi-pipe” process flow to handle Precisiated Natural Language (PNL)
based deduction as well as other natural language phrases that do not match
PNL protoforms. The resulting process flows in a nested form, from the inner
to the outer layers: (a) PNL-based reasoning where all important concepts are
pre-defined by fuzzy sets, (b) deduction-based reasoning which enables responses
drawn from generated/new knowledge, and (c) key phrase based search when (a)
and (b) are not possible. The design allows for two levels of response accuracy
improvement over standard search, while retaining a minimum performance level
of standard search capabilities.

In this research, we add the topic model to the end of our pipeline design.
We use topic models to measure the ‘semantic’ distance between each candidate
answers and the query. Closer the semantic distance implies closer semantic
relation between the answers and the query. This information is used to re-rank
the candidate answers selected by other NLP tools.

One challenge in this application is that, we usually have a short list of key-
words for the query and each candidate answer sentence. Hence, the topic dis-
tribution calculated on these words may not be very accurate when there is
some semantic meaning behind the words we cannot capture. For example, in a
query “Where can I buy a Ford near Berkeley”, a human can understand that
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Fig. 3. Topic Models for answer ranking: we selected a subset of candidate answers
by using keyword search or other NLP techniques. Each keyword in the answer is
expanded by WordNet or Wikipedia. We calculate the topic distributions for answers
and the query and compare the distance between them. The average Kullback-Leibler
divergence is used to measure the semantic distances between candidate answers and
the query.

someone is trying to buy a car of brand Ford. Even if there are some sentences
about auto dealer in San Francisco Bay Area, this useful information cannot be
found by key-word search and other classical NLP tools. We propose a sentence
augmentation approach to expand each short sentence (including query) into a
paragraph by using WordNet [8] or Wikipedia. We use the descriptions on those
keywords (mainly nouns) to formulate a new paragraph which later on will be
used to calculate topic distribution. By using Wikipedia, we would select the
first two sentences. For example, word ‘Ford’ becomes

Ford Motor Company is an American multinational corporation and the
world’s third largest auto maker based on worldwide vehicle sales. Based
in Dearborn, Michigan, a suburb of Detroit, the automaker was founded
by Henry Ford and incorporated in June 16, 1903.

and ‘Berkeley’ becomes

Berkeley is a city on the east shore of San Francisco Bay in Northern
California, in the United States. Its neighbors to the south are the cities
of Oakland and Emeryville.

Although the expansion injects noise to the query and answer sentences, we
can see that addition of valuable keywords ‘auto’ and ‘San Francisco Bay’ helps
to semantically link ‘Ford’ and ‘Berkeley’, respectively. The basic process is
illustrated in Figure 3. The semantic distance between answer A and query
Q is measured by the average Kullback-Leibler (AKL) Distance (or divergence):

AKL(A||Q) =
KL(A||Q) + KL(Q||A)

2
(11)
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Fig. 4. The first 30 words with their distributions in the samples of topic 2, 5 and 9

The score of a set of candidate answers Ai (i = 1, · · · , |A|) is calculated by:

S(Ai) =
AKL(Ai||Q)−1

∑|A|
i=1 AKL(Ai||Q)−1

(12)

This normalization will assign higher scores to the answers which are more se-
mantically close the query.

4 Experimental Studies

In order to test the effectiveness of the topic model, we compare the keyword
based search engine and the new system of combining keyword search and the
topic model. We use Lucene [6] as the standard keyword search engine. We
applied the topic model to the results from Lucene and the overall score is
unweighted sum of the Lucene score and the topic model score. We tested these
two systems on the test corpus which contains 110 documents. Over half of
them are about telecommunications, the other half documents are about sports,
travel, history and other random documents from the Internet. We proposed 90
questions whose correct answers are available in the corpus.
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Fig. 5. The rank difference for Lucene and Lucene+LDA on the BT corpus. The hori-
zontal axis is the question number and the vertical axis is the boosted rank of the best
answer for that question.

In our offline training, we use 20 topics (about 20% of the corpus size) and
the first 30 most frequent words in topic 2, 5 and 9 are shown in Figure 4. For
each topic, the numbers after words are the probabilities of these words in this
topic. Although there is no explicit name for each topic, we still can see that
topic 2 is about history (Tang dynasty of China), topic 5 is about computer and
internet, and topic 9 is about spam emails. Since these words occur together
more frequently, we may consider that they are semantically close. By using the
topic model, we can cluster these words into one semantic topic.

Figure 5 illustrates the results of the two systems (Lucene and Lucene+LDA)
on a test BT corpus. Each bar represents the difference between two ranks given
by Lucene and Lucene+LDA on the same question. For example, given Question
6, the best answer is ranked as 10th by Lucene and ranked 5th by Lucene+LDA.
We obtained the difference 5 by using:

D = Rank(Lucene) − Rank(Lucene+LDA) (13)

where RankLucene is the cardinal number of the best answer rank given by
Lucene. Therefore: if the difference is positive, it means that the new system
boosts the best answer with high ranks; if negative, it means that the new sys-
tem actually performs worse ranking than Lucene due to the extra augmentation
noise; if zero, it means that there is no significant differences for these two sys-
tems. In the 90 questions, the new system improve ranking of the basic keyword
matching approach for 29 questions. There are also 4 questions that the new
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system obtained worse ranking. For the remaining 57 questions, these two sys-
tems give the same rankings of the best answers. The bad rankings for questions
#9, #50 #83 and #88 are likely due to the noise injected by keyword augmenta-
tion. Further research is still needed to reduce such noise in terms of an optimal
augmentation strategy.

The following output is an example of better ranking by using topic mod-
els. Given the question: What is the oil price per barrel in October? The
Lucene results give the best answer ranked as number 10: The new system
(Lucene+LDA) boosted the same answer to 5th rank. The scores of Lucene
and LDA are shown at below:

5: doc: QAtestDocs/senDocLucene/QAtestDocs-BT-finance2&5.txt
with lucene: 0.147376507520675 and LDA: 0.23581354260208 (Final
Score: 0.38319005012276147)
Content: Light sweet crude for October delivery rose 32 cents to
settle at $70.03 a barrel on the New York Mercantile Exchange.

The benefit of such rank boosting is that when the QA system selects the top
N-ranked sentences as candidate answers the best answer is more likely to be
included and shown the the final answer list.

5 Conclusions

In this paper, we investigated a methodology for using hierarchical probabilistic
models for question answering. Topic models are used to re-rank the candidate
answers from a standard keyword based search engine. Each candidate answer
and the query is represented by the distributions over latent topics from offline
training of topic models. Because there is only a short list of keywords for can-
didate answer sentences and query, their keywords were expanded by WordNet
before the topic distribution calculation.

We compared the new system and the basic keyword search engine on a small
test corpus. The ranking results of 90 sample questions are presented. The new
systems performs better than the basic keyword matching for about 31% of the
questions, for 66% of questions, the new system performs as good as the basic
keyword matching. There is also about 3% of questions that the new system
performs worse due to the noise of augmentation. By considering the seman-
tic information, topic models can improve the ranking made by classical search
engine. It also provides a new research direction of how to efficiently use proba-
bilistic models to improve the answer ranking in question answering.
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